Journal of Mathematics and | nformatics
Vol. 26, 2024, 41-48 Journal of
I SSN: 2349-0632 (P), 2349-0640 (online)

Published 19 March 2024 Mathematics and

WWW.researchmathsci.org 2
DOI: http://dx.doi.org/10.22457/jmi.v26a04240 I nfo rm at ! cs

An Algorithm for the Constrained Longest Common
Subsequence and Substring Problem
Rao Li*", Jyotishmoy Deka?, Kaushik Deka® and Dorothy Li*

'Department of Computer Science, Engineering, anthéfaatics
University of South Carolina Aiken, Aiken, SC 298QISA
E-mail: raol@usca.edu
’Department of Electrical Engineering
Tezpur University, Tezpur, Assam 784028, India
E-mail: jyotishmoydeka62@gmail.com
*Department of Computer Science and Engineering
National Institute of Technology Silchar, CachassAm 788010, India
E-mail: jagatdeka20@gmail.com
412000 Market Street, Unit 63, Reston, VA 20190, USA
E-mail: dorothy.li1994@gmail.com
“Corresponding author

Received 25 January 2024; accepted 10 March 2024

Abstract. Let >’ be an alphabet. For two strings X, Y, and a cainsd string P over the
alphabet)’, the constrained longest common subsequence dstriag problem for two
strings X and Y with respect to P is to find a lesfystring Z which is a subsequence of
X, a substring of Y, and has P as a subsequendhislpaper, we propose an algorithm
for the constrained longest common subsequencesamstring problem for two strings
with a constrained string.
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1. Introduction

Let Y be an alphabet and S a string oy¥eA subsequence of a string S over an alphabet
> is obtained by deleting zero or more letters ofASsubstring of a string S is a
subsequence of S consists of consecutive lette& ihhe length of S, denoted [S|, is
defined as the number of letters in S. The longeshmon subsequence (LCSSeq)
problem for two strings is to find a longest strinfich is a subsequence of both strings.
The longest common substring (LCSStr) problem foo strings is to find a longest
string which is a substring of both strings. Botte tlongest common subsequence
problem and the longest common substring problewe leeen well-studied in the last
several decades. More details on the studies &ofirtst problem can be found in [1], [2],
[4,6,7,8,9,11] and the second problem can be fauifigl 13].
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Tsai [12] extended the longest common subsequerd#em for two strings to
the constrained longest common subsequence (CL$8&nem for two strings and a
constrained string. For two strings X, Y, and astmained string P, the constrained
longest common subsequence problem for two sténgsd Y with respect to P is to find
a string Z such that Z is a longest common subseguéor both X and Y and P is a
subsequence of Z. Tsai [12] designed an &(j |P|) time algorithm for the CLCSSeq
problem for two strings X, Y, and a constrainedhgtP. Chin et al. [5] improved Tsai's
algorithm and designed an O(|X]| |Y] |P|) time atigar for the CLCSSeq problem for two
strings X, Y, and a constrained string P.

Motivated by LCSSeq and LCSStr problems, Li ef#0] introduced the longest
common subsequence and substring (LCSSeqSStr)epmofur two strings. For two
strings X and Y, the longest common subsequencesalnstring problem for X and Y is
to find a longest string which is a subsequenc& @nd a substring of Y. They also
designed an O(]X| |Y]) time algorithm for LCSSeq$®Bdblem for two strings X and Y
in [10].

Motivated by Tsai's extension of LCSSeq for twangs to CLCSSeq for two
strings and a constrained string, we introduce ¢omstrained longest common
subsequence and substring problem for two strimgk aa constrained string. For two
strings X, Y, and a constrained string P, the gairstd longest common subsequence
and substring (CLCSSeqSStr) problem for two strikgand Y with respect to P is to
find a string Z such that Z is a longest commorsegbience of X, a substring of Y, and
has P as a subsequence. Clearly, the LCSSeqS®lemrds a special CLCSSeqSStr
problem with an empty constrained string. In thigpgr, we, using some ideas in [5],
design an O(|X]| |Y] |P|) time algorithm for CLCSS®t1 problem for two strings and a
constrained string.

2. The recursions in the algorithm
In order to present our algorithm, we need to distalsome recursions to be used
in our algorithm. Before establishing the recursiowe need some notations as
follows. For a given string S = s ... $ over an alphabét, the ith prefix of S is
defined as S s $ ... 5, where 1< i < |. Conventionally, &is defined as an
empty string. The | suffixes of S are the strings® ... 3, $ % ... S, ..., $-18,
and s Let X =x X2 ... ¥nand Y =y y> ... \h be two strings and P = p ... p a
constrained string. We define Z[i, j, k] as a dgrisatisfying the following
conditions, where ¥i<m, 1<j<n,and I<k<r,

(1) it is a subsequence of, X

(2) it is a suffix of Y,

(3) it has Ras a subsequence,

(4) under (1), (2) and (3), its length is agéaas possible.

Claim 1. Suppose that>Xe xi X2 ... %, Yj=V¥1 2 ...y, and P = ppz ... [x, where 1<i <

m, 1<j<n,and I<k<r. If Z[i, j, K] = z1 z ... zis a string satisfying conditions (1), (2),
(3), and (4) above. Then we have only the followmrgsible cases and the statement in
each case is true.
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Case 1xi=y;= p«. We have |Z][i, j, K]| = |Z[i - 1, j - 1, k - 1]| *in this case.

Case 2xi = ¥ # p«. We have |Z]i, j, K]| = |Z[i - 1, ] - 1, K]| + Dithis case.

Case 3xi #Vj, X# px, and y= p.. We have |Z[i, j, K]| = |Z[i - 1, j, K]| in thisase.
Case 4X # VY, X # P and y# p.. We have |Z[i, j, K]| = |Z[i - 1, |, K]| in thisase.
Case 5xi #Yj, X = p, and y# p«. This case does not happen.

Proof of Claim 1. The five cases can be figured out in the followimgy. Firstly, we
have two cases of x y; or x # y;. When x=y;, we just can have two possible cases; of x
=y = pcor =Y # p«. When x#y;, we just can have three possible cases #fix and

Vi = Po X # P and y# pq, Or X= pc and y# p. Next, we will prove the statements in the
five cases.

Case 1.Since Z]i, j, K] =2 z ... zis a suffix of ¥, we have thatz=y; = X = p.. Let W
=wiwz ... w, =Z[i - 1, - 1, k - 1] be a string satisfyingetitfiollowing conditions,

(1) it is a subsequence of.X,

(2) itis a suffix of Y.,

(3) it has P-1 as a subsequence,

(4) under (1), (2) and (3), its length is as laaggossible.

Note that z z> ... z-1is a string which is a subsequence ¢fiXa suffix
of Yj.1, and has P 1 as a subsequence. By the definition of W mwv... W, we
have that a - £ b. Namely, & b + 1.

Note that ww: ... W Za is a string satisfying the following conditions,

- it is a subsequence of,X
- it is a suffix of Y,
- it has R as a subsequence.

By the definition of Z[i, j, K] =2 z2... z,we have thatb+ & a. Thusa=b +1
and |Z[i, j, Kl| = |Z[i - 1, - 1, k- 1]] + 1.

Case 2.Since ZJi, j, K] =2 z ... zis a suffix of ¥, we have thataz= y; = x # p«. Let U =
Ul ... u=Z[i-1,j-1, k] be a string satisfying thelfaving conditions,

(1) it is a subsequence of X,

(2) it is a suffix of Y.,

(3) it has Ras a subsequence,

(4) under (1), (2) and (3), its length is as laaggossible.

Note that 2z ... z-1is a string which is a subsequence ofiXa suffix of ¥.1,
and has Pas a subsequence. By the definition of Uiseu.. .= Z[i - 1, j - 1, K], we
have that a - ¥ c. Namely, & c + 1.

Note that wu. ... wis a string satisfying the following conditions,

- it is a subsequence of X,
- it is a suffix of ¥.4,
- it has R as a subsequence.
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Thus yuy ... wy; is a string which is a subsequence gfasuffix of ¥, and has Pas a
subsequence. By the definition of Z]i, j, k] #zz ... z, we have thatc +4a. Thusa=c¢
+land|Z]i,j,K|=1|Z[i-1,j-1, k]| + 1.

Case 3.Since Z[i, j, K| = 2 z ... zis a suffix of ¥, we have that.z= y; = pc# xi. Let V =
vive ... w=Z[i - 1, ], K] be a string satisfying the follang conditions,
(1) it is a subsequence of X
(2) it is a suffix of Y,
(3) it has Ras a subsequence,
(4) under (1), (2) and (3), its length is as laaggossible.
Note that 2z ... z is a string which is a subsequence ofiXa suffix of ¥, and
has Ras a subsequence. By the definition of Viwv.. w= Z[i - 1, j, K], we have that a
<d.
Note that yvv- ... W is a string satisfying conditions,
- it is a subsequence of X,
- it is a suffix of Y,
- it has R as a subsequence.
Thus M V2 ... W is a string which is a subsequence gfaxsuffix of ¥, and has Pas a
subsequence. By the definition of Z][i, j, k] £z ... z, we have that ¢ a. Thusa =d
and |Z[i, j, Kl| = |Z[i - 1, j, k]

Case 4.Since Z|i, j, k| =2z ... zis a suffix of Y, we have thatz=y # px, za =V} # Xi,
and X#p. Let Q =g ... ¢ = Z[i - 1, |, k] be a string satisfying the follang
conditions,
(1) it is a subsequence of X,
(2) itis a suffix of ¥,
(3) it has R as a subsequence,
(4) under (1), (2) and (3), its length is as laaggossible.
Note that zz; ... z is a string which is a subsequence ofiXa suffix of ¥, and
has R as a subsequence. By the definition of Q epq.. ¢ = Z[i - 1, j, k], we have that a
<e.
Note that 0. ... ¢ is a string satisfying the following conditions,
- it is a subsequence of X,
- it is a suffix of Y,
- it has R as a subsequence.
Thus g ... ¢ is a string which is a subsequence gf Xsuffix of ¥, and has Pas a
subsequence. By the definition of Z[i, j, k] ¥zz ... z, we have that € a. Thus a = e and
1[I, j, KIl = |Z[i - 1, ), K ]I.

Case 5.Since Z|i, j, K] = 22 ... zis a suffix of ¥, we have that.z= y; # xi = p.. Since z

2 ... Zis a subsequence of 2And x+# z,, we have thatzappears beforg gn X. Since x

= pon X, pip2 ... i cannot be a subsequence of.z... z, a contradiction. Since this

case does not happen, it is not necessary for disalowith this case in our algorithm.
Therefore, the proof of Claim 1 is complete.
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The following Claim 2 which will be used in our alifthm demonstrates the
implications of the condition that there is notténg) which is a subsequence of=Xx x2
.. %, asuffixof ¥ =yiy» ...y, and has B= p1p2 ... x as a subsequence.

Claim 2. Suppose there is not a string which is a subseguehX = x1 X2 ... %, a suffix
of Yj=viy2...}, and has P=p. p: ... x as a subsequence.

[1]. If xi=y; = p,, then there is not a string which is a subsequeheg.1 = x1 X2 ... %-1,
asuffixof Yi.i=viy>...y.,andhasRi=p p ... [x-1as a subsequence.

[2]. If Xi=Y; # px, then there is not a string which is a subsequehee.1 = X X2 ... %-1,
asuffixof Yi.i=wyiy. ... y-1, and has P=p. p2 ... px as a subsequence.

[3]. If xi# Vi, X # px, and y= px, then there is not a string which is a subsequehég. 1
= X1 X2... %-1, a suffix of ¥ =y1 y> ... y, and has P=p1 p2 ... x as a subsequence.

[4]. f Xi £V, X # p, and y# px, then there is not a string which is a subsequéoTcs; .,
=X X2 ... %-1, asuffix of ¥ =y1 y> ... y, and has P=p1 p2... px as a subsequence.

Proof of Claim 2. We next will prove the statements in the four sase
[1]. Now we have thatix= y; = p.. Suppose, to the contrary, that there is a stihg
which is a subsequence of- X=X X2 ... %-1, a suffix of ¥{.1 = y1 y2 ... y-1, and has P1
=pL P2 ... x-1as asubsequence. ThenaXMs a string which is a subsequence ofX
X2 ... % a suffix of Y, = y1 y» ... yf, and has P= p p2... x as a subsequence, a
contradiction.
[2]. Now we have thatix y # p«. Suppose, to the contrary, that there is a stihg
which is a subsequence of - X= x1 X2 ... %-1, a suffix of .1 = y1 y> ... y-1, and has P=
p1 P2 ... x @s a subsequence. TheaXMs a string which is a subsequence ofX; x; ...
xi, a suffix of ¥ =y1 y2 ... y, and has P=p1 p2 ... x as a subsequence, a contradiction.
[3]. Now we have thatix i, X # p,, and y= p.. Suppose, to the contrary, that there is a
string W5 which is a subsequence for.X= X X ... X.1, a suffix of =y y» ... y, and
has R=p p2 ... x @s a subsequence. Then /a string which is a subsequence oEX
X1 X2 ... %, a suffix of ¥=y1 y> ... y, and has P= p. p2 ... x as a subsequence, a
contradiction.
[4]. Now we have thati y;, X # p, and y# p«. Suppose, to the contrary, that there is a
string Ws which is a subsequence of . X= x1 X2 ... %.1, a suffix of =y1 y» ... y, and
has R=p p ... x as a subsequence. Then M/a string which is a subsequence pEX
X1 X2 ... % a suffix of ¥ = y1 y» ... y, and has P= p. p2 ... x as a subsequence, a
contradiction.

Therefore, the proof of Claim 2 is complete.

Our algorithm will use the following Claim 3 whenewrace back to find the
longest string which is a subsequence of X, a sinigsof Y, and has P as a subsequence.

Claim 3. Let U = u* u¥ ... g be a longest string which is a subsequence of X, a
substring of Y, and hasRBs a subsequence. Then h(k) = max{|Z[i, j, K]gik m, 1<]j

<n, 1<k<r}

Proof of Claim 3. For each i with X i <m, each j with Xj<n, and each k with & k <

r, we, from the definition of Z[i, j, k], have th&[i, j, k] is a subsequence of X, a
substring of Y, and hascBs a subsequence. By the definition 6f We have that |Z]i, |,

K| < |U" = h(k). Thus max{|Z[i, j, K]| : ¥i<m, 1<j<n, 1<k<r} <h(k).
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Since U = u* U ... g~ is a string which is a subsequence of X, a suigstof
Y, and has Pas a subsequence, there is an index s and antisdek that Mk)k = xs and
Un® = W such that W= u* u* ... uw" is a subsequence ot suffix of ¥, and has P
as a subsequence. From the definition of Z[i, j, W have that h(kx |Z[s, t, K]|<
max{|Z[i, j, k]| : 1<i<m, 1<j<n, 1<k<r}

Hence h(k) = max{|Z[i, j, K]| : Ei<m, 1<j<n, 1<k <r} and the proof of
Claim 3 is complete.

3. The algorithm

Now we can present our algorithm. We assume thatxXz ... Xn, Y = V1 V2 ... Yo, and P

=pp2 ... p. Let M be a three-dimensional array of size (m)th &+ 1)(r + 1). It can be

thought as a collection of (r + 1) two-dimensioaahys of size (m + 1)(n + 1). The cells

MI[i][il[k], where 0 <i<m, 0<j<n, and X k<r, store the lengths of the longest strings

such that each of them is a subsequence, @ 3uffix of ¥, and has Pas a subsequence.
If either i < k or j <k, there is not a string whiis a subsequence of & suffix

of Yj, and has Pas a subsequence. This situation is representsdtbigg M[i][j][K] = -

o, wherewo should be a larger number, for example, 100mnr. &yorithm consists of

the following steps. Firstly, we fill in the boungecells in array M.

Step L.Ifi=0and k=0 or j =0 and k = 0, the lengtha string which is a subsequence
of Xi, a suffix of ¥, and has Pas a subsequence is zero. Thus, M[O][j][0] = Ogreh0<
j <n; MJi][0][0] = O, where O<i<m.

Step 2.1f k = 0 or R is an empty string. The CLCSSeqSStr problem far $vings X
and Y and a constrained string P becomes the LCE8egroblem for two strings X and
Y. The cells of M[i][j][0], where 1< i< m and 1< j < n, can be filled in by the following
rules. If x =y, then M[i][j][0] = M[i - 1][j - 1][0] + 1. If x; # y;, then M[i][j][O] = M[i -
1][1I0]. The detailed proofs for the truth of tineles can be found in [10].

Step 3.1f i = 0 and k> 1, there is no string which is a subsequence; o Xuffix
of Yj, and has Pas a subsequence. Thus, M[0][j][K] =,-where O<j < n and 1<
k<r.

Step 4.1f j = 0 and k> 1, there is no string which is a subsequence; o Xuffix
of Y;, and has Pas a subsequence. Thus, M[i][0][K] zo; where 0<i<m and 1
<k<r.

Next, we will fill in the cells M[i][j][k], where i> 1, j> 1, and k> 1.

Step 5.1fi > 1, j>1, k>1, and x=Y; = [x, then M[i][j][K] = M[i - 1][j - 1][k - 1]
+ 1.

Step 6.1fi > 1, j>1, k> 1, and x=; # p, then M[iJ[j][K] = M[i - 1][j - 1][k ] +
1.
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Step 7.1fi > 1, j>1, k> 1, and x£Vj, Xi # px, and y = x, then M[i][jl[k] = M[i -
1]010K]-

Step 8.fi > 1, j>1, k> 1, and x#£Vj, Xi # P, and y# p«, then M[i][j][k] = M[i -
1]010K]-

Notice that Claim 3 implies that if a longestsfyiwhich is a subsequence of X =
Xm, a substring of Y = ¥ and has P =;Ris a subsequence exists then its length is equal
to max{|Z[i, j, r]] : 1<i<m, 1<j<n}=max{M[i][j][r] : 1 <i<m, 1<j<n}. Hence a
longest string which is a subsequence of X, a sualgstf Y, and has P as a subsequence
can be found in the following steps.

Step 9.Define one variable callealaxLength which eventually represents the length of
a longest string which is a subsequence of X, astsng of Y, and has P as a
subsequence and its initial value is 0.

Step 10.Define another variable callddstindexOnY which eventually represents the
last index of the desired string which is a subgtof Y and its initial value is n.

Step 11.Visit all the cells of M[i][j][r], where 0<i < m and 0<j < n, in the last two-
dimensional array created in the algorithm abovaising a loop embedded in another
loop. During the visitation, if MIi][j][r] > maxLength, then updatemaxLength and
lastindexOnY as M[i][j][r] and j, respectively.

Step 12.After finishing the visitation of all the cells of[i][j][r], where O <i<mand O
< j £ n, we return the substring of Y betweelasiindexOnY - maxLength) and
lastindexOnY.

From Claim 1, Claim 2, and Claim 3, we have tH®Wing theorem.

Theorem 1. The above algorithm is correct and both the timemmlexity and space
complexity of the algorithm are O((m + 1)(n + 1}d)) = O(m n r).

4. Conclusion

In this paper, we introduce a new problem called tonstrained longest common
subsequence and substring problem for two stringg,»and a constrained string P. We
propose an algorithm with time complexity and spaoeplexity of O(|X| |Y| |P]) to
solve the problem. In future, we will design newaxlthms to improve the time and
space complexities and find the applications ofadgorithm in the real world.
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