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Abstract. In this note, we first introduce a new problem called the longest common 
subsequence and substring problem. Let X and Y be two strings over an alphabet ∑. The 
longest common subsequence and substring problem for X and Y is to find the longest 
string, which is a subsequence of X and a substring of Y. We propose an algorithm to 
solve the problem. 
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1. Introduction  
Let ∑ be an alphabet and S a string over ∑. A subsequence of a string S is obtained by 
deleting zero or more letters of S. A substring of a string S is a subsequence of S 
consisting of consecutive letters in S. Let X and Y be two strings over an alphabet. The 
longest common subsequence problem for X and Y is to find the longest string, which is 
a subsequence of both X and Y. The longest common substring problem for X and Y is to 
find the longest string, which is a substring of both X and Y. Both the longest common 
subsequence problem and the longest common substring problem have been well-studied 
in the last several decades. They have applications in different fields, for example, in 
molecular biology, the lengths of the longest common subsequence and the longest 
common substring are the suitable measurements for the similarity between two 
biological sequences. More details on the algorithms for the first problem can be found in 
[1], [2], [4], [5], [7], and [8] and the second problem can be found in [3] and [9]. 
Motivated by the two problems above, we introduce a new problem called the longest 
common subsequence and substring problem. The longest common subsequence and 
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substring problem for X and Y is to find the longest string, which is a subsequence of X 
and a substring of Y. In this note, we propose an algorithm to solve this problem.  
 
2. The foundations of the algorithm      
In order to present our algorithm, we need to prove some facts which are the foundations 
for our algorithm. Before proving the facts, we need some notations as follows. For a 
given string S = s1 s2 ... sl over an alphabet ∑, the size of S, denoted |S|, is defined as the 
number of letters in S. The ith prefix of S is defined as Si = s1 s2 ... si, where 1 ≤ i ≤ l. 
Conventionally, S0 is defined as an empty string. The l suffixes of S are the strings of s1 
s2 ... sl, s2 s3 ... sl, ..., s(l – 1) sl, and sl. Let X = x1 x2 ... xm and Y = y1 y2 ... yn be two strings. 
We define Z[i, j] as a string satisfying the following conditions, where 1 ≤ i ≤ m and 1 ≤  
j ≤ n. 
                          (1) It is a subsequence of X i. 
                          (2) It is a suffix of Yj. 
                          (3) Under (1) and (2), its length is as large as possible. 
 
Fact 1. Let U = u1 u2 ... ur be a longest string which is a subsequence of X and substring 
of Y. Then r = max{|Z[i, j]| : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. 
Proof of Fact 1. For each i with 1 ≤ i ≤ m and each j with 1 ≤ j ≤ n, we, from the 
definition of Z[i, j], have that Z[i, j] is a subsequence of X and substring of Y. By the 
definition of U, we have that |Z[i, j]| ≤ |U| = r. Thus max{|Z[i, j]| : 1 ≤ i ≤ m, 1 ≤ j ≤ n} ≤ 
r.  

Since U = u1 u2 ... ur is a longest string which is a subsequence of X and a 
substring of Y, there is an index s and an index t such that ur = xs and ur = yt such that U = 
u1 u2 ... ur is a subsequence of Xs and a suffix of Yt. From the definition of Z[i, j], we 
have that r ≤ |Z[s, t]| ≤ max{|Z[i, j]| : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.  

Hence r = max{|Z[i, j]| : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and the proof of Fact 1 is complete. 
 
Fact 2. Suppose that Xi = x1 x2 ... xi and Yj = y1 y2 ... yj, where 1 ≤ i ≤ m and 1 ≤ j ≤ n. If 
Z[i, j] = z1 z2 ... za is a string satisfying conditions (1), (2), and (3) above. Then we have  

 [1]. If x i = yj, then a = 1 + the length of a longest string which is a subsequence  
        of Xi - 1 and a suffix of Yj - 1.  
 [2]. If x i ≠ yj, then a = the length of the longest string which is a subsequence of  
        Xi - 1 and a suffix of Yj.   

Proof of [1] in Fact 2. Suppose W = w1w2 ... wb is a string satisfying the following 
conditions.  
   (i) It is a subsequence of Xi - 1.  
   (ii) It is a suffix of Yj - 1.  
                          (iii) Under (i) and (ii), its length is as large as possible.  
Since W = w1 w2 ... wb is a subsequence of Xi - 1, a suffix of Yj - 1, and xi = yj, W = w1 w2 
... wb  xi is a subsequence of Xi and a suffix of Yj. From the definition of Z[i, j], we have 
|W| + 1 = b + 1 ≤ |Z[i, j]| = a.  

Since Z[i, j] = z1 z2 ... za is a string satisfying conditions (i), (ii), and (iii) above, 
we have that za = yj = xi. We further have that z1 z2 ... za - 1 is a string which is a 
subsequence of Xi - 1 and a suffix of Yj - 1. From the definition of W = w1 w2 ... wb, we 



An Algorithm for the Longest Common Subsequence and Substring Problem   

79 
 

 

have that a - 1 ≤ b. Thus a = 1 + b and a = 1 + the length of the longest string, which is a 
subsequence of Xi - 1 and a suffix of Yj - 1. 
Proof of [2] in Fact 2. Suppose U = u1 u2 ... uc is a string satisfying the following 
conditions.  

(α) It is a subsequence of Xi - 1.  
(β) It is a suffix of Yj. 
(γ) Under (α) and (β), its length is as large as possible.   

Since U = u1 u2 ... uc is a subsequence of Xi – 1 and a suffix of Yj, U = u1 u2 ... uc is a 
subsequence of Xi and a suffix of Yj. By the definition of Z[i, j], we have |U| = c ≤ |Z[i, j]| 
= a.  

Since Z[i, j] = z1 z2 ... za is a string satisfying conditions (1), (2), and (3) above, 
we have that za = yj ≠ xi. Thus z1 z2 ... za is a string that is a subsequence of Xi - 1 and a 
suffix of Yj. From the definition of U = u1 u2 ... uc, we have that a ≤ c. Thus a = c and a = 
the length of the longest string, which is a subsequence of Xi - 1 and a suffix of Yj. Hence, 
the proof of Fact 2 is complete. 
 
3. An algorithm for the longest common subsequence and substring problem 
Based on Fact 1 and Fact 2 in Section 2, we can design an algorithm for the longest 
common subsequence and substring problem. Once again, we assume that X = x1 x2 ... xm 
and Y = y1 y2 ... yn are two strings over an alphabet ∑. In the following Algorithm A, W 
is a two-dimensional array of size (m + 1) × (n + 1) and the cells W(i, j), where 1 ≤ i ≤ m 
and 1 ≤ j ≤ n, store the lengths of strings such that each of them satisfies the following 
conditions.  

(1) It is a subsequence of Xi. 
                          (2) It is a suffix of Yj. 
                          (3) Under (1) and (2), its length is as large as possible. 
 
ALG A (X, Y, m, n, W) 
1.  Initialization: W(i, 0) ˂ ̶  ̶  0, where i = 0, 1, ..., m 
                            W(0, j) ˂̶  ̶  0, where j = 0, 1, ..., n 
                            maxLength = 0 
                            lastIndexOnY = n 
2. for  i ˂̶  ̶  1 to m  
3.         for  j ˂̶  ̶  1 to n 
                  if  xi = yj  W(i, j) ˂̶  ̶  W(i - 1, j - 1) + 1 
                  else W(i, j)  ˂̶  ̶  W(i - 1, j) 
                  if  W(i, j) > maxLength 
                          maxLength = W(i, j) 
                          lastIndexOnY = j  
 4. return  A substring of Y from (lastIndexOnY – maxLength + 1) to lastIndexOnY 
 

Because of Fact 1 and Fact 2 in Section 2, Algorithm A is correct. Obviously, the 
time complexity of Algorithm A is O(mn) and the space complexity of Algorithm A is 
also O(mn). We implemented Algorithm A in Java and the program can be found at 
“https://sciences.usca.edu/math/~mathdept/rli/LCSSeqSStr/LCSS.pdf”. 
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Below is an example that illustrates Algorithm A above. Suppose X = abuvbc 
and Y = dabca. Then the two-dimensional array W in Algorithm A is computed as 
follows.   
                           

 Y d a b c a 
X 0 0 0 0 0 0 
a 0 0 1 0 0 1 
b 0 0 1 2 0 1 
u 0 0 1 2 0 1 
v 0 0 1 2 0 1 
b 0 0 1 2 0 1 
c 0 0 1 2 3 1 

 
Fig. 1. The two-dimensional array W computed in Algorithm A 

 
Also, Algorithm A yields maxLength = 3, lastIndexOnY = 4, and outputs a string of abc, 
the longest string that is a subsequence of X = abuvbc and a substring of Y = dabca. 
 
4. Conclusion  
In this note, we introduce a new problem called the longest common subsequence and 
substring problem for two strings X and Y. Even though we can design an algorithm with 
time and space complexities of O(|X||Y|) to solve the problem, we plan to design new 
algorithms to improve the time and space complexities and find the applications of our 
algorithm in the real world. 

Acknowledgements. The authors would like to thank the referee for his/her suggestions, 
which led to the improvements of the initial manuscript. 

Conflicts of Interest. There are no conflicts of interest among the authors. 

Authors’ contributions.  All the authors contributed equally.  

REFERENCES 

1. A.Apostolico, String editing and longest common subsequences, in: G. Rozenberg 
and A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 2, Linear Modeling:   
Background and Application, Springer-Verlag, Berlin, 1997, 361-398. 

2. A.Apostolico, Chapter 13: General pattern matching, in: M. J. Atallah (Ed.), 
Handbook of Algorithms and Theory of Computation, CRC, Boca Raton, FL, 1998. 

3. D.Gusfield, II: Suffix Trees and Their Uses, Algorithms on Strings, Trees, and 
Sequences: Computer Science and Computational Biology, Cambridge University 
Press, 1997. 

4. L.Bergroth, H.Hakonen and T.Raita, A survey of longest common subsequence 
algorithms, in: SPIRE, A Coruňa, Spain, 2000. 

5. T.Cormen, C.Leiserson, R.Rivest and C.Stein, Section 15.4: Longest common 
subsequence, Introduction to Algorithms (second edition), MIT Press, Cambridge,        
MA, 2001. 



An Algorithm for the Longest Common Subsequence and Substring Problem   

81 
 

 

6. D.Hirschberg, A linear space algorithm for computing maximal common 
subsequences, Comm. ACM, 18 (1975) 341-343. 

7. D.Hirschberg, Serial computations of Levenshtein distances, in: A. Apostolico and  
8. Z.Galil (Eds.), Pattern Matching Algorithms, Oxford University Press, Oxford,       

1997.  
9. C.Rick, New algorithms for the longest common subsequence problem, Research       

Report No. 85123-CS, University of Bonn, 1994. 
10. P.Weiner, Linear pattern matching algorithms. In: 14th Annual Symposium on       

Switching and Automata Theory, Iowa City, Iowa, USA, October 15–17, 1973, 1–11.  
 


